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Abstract

Currently, high performance computing is largely restricted to well-funded research groups.

This project aimed to create a high performance cluster using the cheap and energy-

efficient 18-core Parallella boards. Four boards were connected over a network as a clus-

ter and basic test programs were run using MPI. Experimental results show that the

Epiphany chip performs very well compared with other energy-efficient chips such as the

Cortex A9 ARM with a 11× speedup. Similar performance is achieved by the cluster of

four Parallella boards against an Intel i5 3570 running a single thread. The Epiphany

however, sees a drop in speed when attempting complex arithmetic operations compared

with the other processors owing to the lack of hardware support. It is possible to achieve

high performance using low-powered Parallella boards as long as the user is aware of the

Epiphany chip’s weaknesses and avoids these.
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CHAPTER

1

INTRODUCTION

As processor clock speeds get faster they reach a soft cap, from either excessive power

consumption or heat output, which makes it infeasible to increase the speed any higher. To

get around this problem chips have started to incorporate multiple processors that can run

slower but achieve the same or better performance. Using multiple individual computers

over a network, which is known as cluster computing, it is possible for them to work

together as one system to solve problems [9]. This has made access to a “supercomputer”

simpler for the ordinary user. Obviously, there is still the need for specialised super-

computers, but this is largely restricted to well-funded research groups.

Cluster computing has become more and more popular as it is a low-cost way of creating

high performance computers. Using ordinary personal computers (PCs) is one way of

setting up a cluster, but the advent of even lower cost “computing” devices, has provided

more opportunities than ever before of creating such clusters.

The Parallella is one such device that provides 18 cores per board at a comparatively low

cost.

1
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1.1 Problem Statement

The release of the Parallella board provides a cheap and energy efficient computer that

requires minimal configuration.

In this research, we investigate whether it is possible to build a high performance computer

using a cluster of Parallella boards, thereby providing a very low-cost alternative to an

ordinary PC.

Our research question is as follows: What speedup can be obtained executing typical

parallel programs on a Parallella cluster, compared with a normal PC? We hypothesise

that this is possible, provided that the cluster overhead and limitations of the hardware/-

software are not too great.

1.2 Objectives

In order to investigate the research question, the proposed objectives of this project are

as follows:

• Build a high performance computer using multiple Parallella boards connected over

a network.

• Install applicable operating systems and software to set up the cluster.

• Compare performance of the Parallella cluster with other similarly priced systems

and/or a desktop PC.

• Discover the limitations of the Parallella cluster.

1.3 Approach

To achieve the research objectives, the first step is the physical building of the Parallella

cluster. This involves setting up cooling on all the Parallella boards using a fan, providing

power to all the boards via the mounting hole pads, setting up a router or switch to

facilitate communication between the boards, and mounting and connecting all the boards

to power and the switch.



1.4. THESIS ORGANISATION 3

After setting up the components, an operating system and software need to be installed

on each board or alternatively, network booting needs to be set up on each. The software

must be configured so that the boards are aware of each other and work together.

Once the Parallella cluster is operational, comparisons against other systems can be made

using software to benchmark each system’s performance. Once comparisons and bench-

marks are taken ways in which to optimise the Parallella cluster can be explored and

tested; this would involve changing the cluster configuration and any other optimisations

discovered after further research. Results and any limitations of the Parallella boards will

be recorded.

1.4 Thesis Organisation

The remainder of this thesis is organised as follows:

• Chapter 2 introduces the topic of high performance computing, discusses some of

the attempts to produce both low-cost and high-cost supercomputers, and goes over

some of the benchmarks used in high performance computing.

• Chapter 3 explains how the Parallella cluster was set up and configured to allow

MPI and Epiphany programs to be created and run.

• Chapter 4 discusses how programs are created for the Epiphany co-processor and

presents the results of the benchmarks.

• Chapter 5 summarises the research, giving the conclusions, and suggests possible

extensions to the research.



CHAPTER

2

LITERATURE REVIEW

The aim of this project is to create and benchmark a cluster of Parallella boards. In

preparation for this, information relevant to the project is reviewed. The topics discussed

include high performance computing (HPC), HPC benchmarks, and the Parallella boards

themselves.

2.1 High Performance Computing

HPC is the term for very fast systems aimed at processing large volumes of information

quickly. High performance computers are made up of multiple processors as the speed of a

single processor has reached its limits due to physics [16]. HPC is most cost effectively ob-

tained using cluster computing, as most places needing large amounts of processing power

have multiple computers readily available [9]. HPC is used to run high cost simulations

that would be too expensive or difficult to do physically; these require large amounts of

computational power to be completed in a timely manner [30; 28], and therefore, more

powerful machines are continuously being built. HPC has evolved over time with the

number of cores in a single computer approaching the millions and performance reaching

multiple petaFLOPS (1015 floating-point operations per second) [4].

4
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Owing to current size and speed constraints on single core processors, it has been found

that running multiple slower cores is both more efficient and faster. Algorithms need to

take into account ways in which to split the workload evenly between multiple processors

if they want to obtain faster execution speeds using this type of architecture [16]. Many

compilers have special flags so that they can optimise programs for parallel computa-

tion [24]; this, however, only achieves a minor boost in speed when compared with an

efficient algorithm that splits the work into multiple pieces that can be distributed among

multiple processors. According to David Geer [16], to take advantage of multiple cores,

programs need to be rewritten so that they can run on multiple threads, with each thread

assigned to a separate processor.

2.1.1 Concepts/Terminology

Throughput The rate at which data can be successfully transferred over a channel.

Shared Memory Memory, over which multiple processes have control and which is

shared between them.

Distributed memory This is the term used in a multi-core system when a processor

has its own private memory that it can access and use; however, when it needs

information from another process, it has to communicate with the other process

and request the particular data.

Bottleneck A bottleneck occurs when the effectiveness of a system is restricted by a

single or small number of resources.

Latency This refers to the amount of time required for an instruction to travel from its

source to its location and be acted upon. A large amount of latency is detrimental

as the time to pass information around a system will become a bottleneck and the

system will not be able to make use of all its computational power.

FLOPS Floating Point Operations Per Second is the usual measurement of a high perfor-

mance computer. It refers to the number of instructions using floats that a system

can compute per second. It is usually referred to using a prefix such as giga for 109

or peta for 1015.
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2.1.2 Clusters Architectures

With the demand for large amounts of processing power, various ways of creating super-

computers cheaply have appeared. Clusters of computers connected on a network can be

purposed to work together as a supercomputer. With the increased speed and decreased

latency of the Internet, it is possible to create a cluster using computers from all over

the world; this has led to programs and applications that allow a computer to connect

to a pool of other computers and add its processing power to the computation. There

are, however, some factors limiting the effectiveness of cluster computing. These include

building a switch to keep up with the speed of a single core processor and creating com-

pilers that make good use of multiple processors. There are two generally used methods

for controlling communication within a cluster:

MPI The individual nodes of the cluster can communicate with each other using a mes-

sage passing interface (MPI), which provides a thread safe application programming

interface (API) that allows the work to be effectively delegated to multiple nodes

on the network [27; 19] and information passed between each node so that it can be

worked on. More information on MPI is provided in Section 2.2.1 with the overview

of MPICH.

Parallel Virtual Machine uses a parallel virtual machine (PVM) approach, which com-

bines all the nodes and allows them to appear as a single PVM. This PVM handles

all the message passing, task scheduling, and data conversions. To set this up, each

node of the cluster needs the same PVM image installed and must be marked as a

PVM node. Parallel virtual machines are popular due to the ease with which the

cluster can be managed[17]. Some of the available PVMs are reviewed in Section 2.2.

2.1.3 Existing HPC Architectures

This subsection gives an overview of some existing high performance computing systems.

Iridis-pi The Iridis-pi[11] is a cluster constructed from 64 Raspberry Pi model B nodes

and held together with Lego. The Iridis-Pi was created by a team at the University of

Southampton. Each Raspberry Pi has a 700 MHz ARM processor, 256 MB of RAM,

a 16GB SD card, and a 100Mb/s network interface. The benefits of the cluster are its

cheap price, compact size, and low power consumption. Using the HPL benchmark
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Figure 2.1: Photo of the Iridis-pi at the University of Southampton [11]

and all 64 nodes the Iridis-pi achieves a throughput of 1.14 gigaFLOPS[11]. The

price of a Raspberry Pi model B at time of writing is 450 South African Rand1

bringing the cost of the 64 Iridis-pi nodes to 28800 South African Rand. This price

excludes the cost of the switch, Lego and cableing.

Tianhe-2 (Milkyway-2) The most powerful supercomputer according to the Top500

list of the world’s supercomputers in November 2015 is the Tianhe-2 (Milkyway-

2)[4]. On the LINPACK benchmark, it achieved a performance of 33,862.7 ter-

aFLOPS with a theoretical peak of 54,902.4 teraFLOPS[4]. The Tianhe-2 is sixth

according to the graph500 November 2015 results. The graph500 uses different

benchmarks that are focused on data intensive supercomputer applications. The

Tianhe-2 performed at 2061.48 GTEPS (109 traversed edges per second)2. Devel-

oped by China’s National University of Defence Technology (NUDT) in collabora-

tion with the Chinese IT firm Inspur, the Tianhe has managed to maintain the top

spot since June 2013. The Tianhe is composed of 16,000 computer nodes, each con-

sisting of two Intel Xeon IvyBridge processors and three Xeon Phi processors with

access to 88 GB of RAM; this equates to 3.12 million cores and 1.404 petabytes of

RAM3. Running NUDT’s own operating system Kylin Linux, which is optimised

for high-performance parallel computing as well as having support for power man-

agement and high-performance virtual computing zone, the Tianhe-2 uses MPICH2

with a customised GLEX channel[4] for executing HPC programs. A picture of a

1http://pifactory.dedicated.co.za/product/raspberry-pi-1-model-b/
2http://www.graph500.org/
3http://www.extremetech.com/computing/159465-chinas-tianhe-2-supercomputer-twice-as-fast-as-

does-titan-shocks-the-world-by-arriving-two-years-early

http://pifactory.dedicated.co.za/product/raspberry-pi-1-model-b/
http://www.graph500.org/
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Figure 2.2: Photo of the Tianhe-2

portion of the supercomputer can be seen in Figure 4.34

2.1.4 Benchmarks for HPC

The HPC Challenge Benchmark is a set of seven benchmarks for testing an HPC sys-

tem’s ability to cope with different scenarios, thereby giving an indication of real-world

performance[21]. These benchmarks include:

HPL “A Portable Implementation of the High-Performance LINPACK Benchmark for

Distributed-Memory Computers” The computers in the Top500 list are ranked by

the HPL NxN benchmark results[4]. The reason for choosing LINPACK as a bench-

mark is that it is widely used, and the benchmarked performance of a large number

of systems is available. LINPACK is a collection of Fortran subroutines for solving

systems of linear equations. Owing to the distributed nature of both the memory

and computing nodes of HPC, the highly-parallel LINPACK (HPL) benchmark was

4 Picture taken from : http://chinadaily.com.cn/business/tech/img/attachement/jpg/site1/
20140626/eca86bd9e2eb1516011b02.jpg

http://chinadaily.com.cn/business/tech/img/attachement/jpg/site1/20140626/eca86bd9e2eb1516011b02.jpg 
http://chinadaily.com.cn/business/tech/img/attachement/jpg/site1/20140626/eca86bd9e2eb1516011b02.jpg 
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created to compare results on these systems. In the Top500 list, the results taken

into account are:

• Rmax – the maximum performance achieved by LINPACK

• Nmax – how large the problem was to get the result in Rmax

• N1/2 – the size of the problem to get half of Rmax

• Rpeak – theoretical peak performance.

all of which are taken from the HPL benchmark [13; 14; 5; 20; 4].

DGEMM is a method that calculates the product of double precision matrices and

measuring the rate of execution, provides insight into the performance of the HPC

device.

STREAM provides a measurement of the “sustainable memory bandwidth and the cor-

responding computation rate for simple vector kernels”[22].

PTRANS (parallel matrix transpose) forces pairs of processors to communicate si-

multaneously, testing the communication capacity of the network5.

Random Access By providing a measurement in GUPS (giga updates per second), this

benchmark measures random memory access6.

FFT (Fast Fourier Transform) This benchmark measures “the floating point rate of

execution of double precision complex one-dimensional Discrete Fourier Transform

(DFT)”[29; 21].

Communication bandwidth and latency Using the effective bandwidth benchmark7,

latency and bandwidth are measured for a number of simultaneous communication

patterns[21].

All these benchmarks measure different aspects that are useful in the real world and

provide an idea of what should be tested.

5http://www.netlib.org/parkbench/html/matrix-kernels.html
6http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
7https://fs.hlrs.de/projects/par/mpi//b_eff/

http://www.netlib.org/parkbench/html/matrix-kernels.html
https://fs.hlrs.de/projects/par/mpi//b_eff/
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2.2 Software For Clusters

Since we are deploying a cluster, in this section we only discuss software relevant to cluster

computers.

2.2.1 MPICH

MPICH is a high performance, portable and widely used implementation of the Message

Passing Interface (MPI) standard. MPICH was created for distributed memory systems,

with the idea of portability and high performance in mind. Excellent results have been

achieved with MPICH, which is the most used implementation of MPI in the world, and

its derivatives. MPICH is able to work in many different environments and take advantage

of what is available to increase performance while maintaining portability, for example,

using shared memory to pass messages between processors faster. MPICH is distributed

as source code and has an open-source freely available licence [8; 19; 18].

2.2.2 Open-MPI

Open-MPI is an open-source implementation of the Message Passing Interface [1]. It has

multiple partners from across the HPC community, maintaining its libraries[15]. These

partners include ARM, which provided the Zynq-chip for use on the Parallella board [1].

Open-MPI conforms fully to MPI-3.1 standards, supports multiple operating systems[15],

and is provided by default on the Parallella board Ubuntu distribution.

2.2.3 OpenMP

OpenMP is “an industry standard API for shared-memory programming” [12]. A shared-

memory parallel system describes a multi-processor system where individual processors

share one memory location [10]. Each processor can still have its own personal cache

memory to work with as the speed difference between main memory and processor memory

would cripple the speed if the processor needed to pick up everything from the shared

memory space. OpenMP was introduced to fix the inability of compilers to make good

decisions on how to split up a program to take advantage of multiple processors; although

this is possible for simpler programs, a user would need to cast a more discerning eye
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for more complex problems [10]. OpenMP provides an alternative to message passing in

parallel programming. OpenMP is a set of routines and compiler directives to manage

shared-memory parallelism. The OpenMP standard is made up of four parts, namely,

control structure, data environment, synchronisation, and runtime library [12], which

can be added to a sequential program written in C, C++ or Fortran [10].

2.2.4 Rocks Cluster Distribution

Rocks is a Linux distribution, with its latest version Sidewinder based on Cent-OS 6.6,

but only available for 64-bit machines 8. It is unlikely that Rocks will be used in the

construction on the Parallella cluster as there does not seem to be an official release for

the ARM processor, which is used by the Parallella. Rocks is an open-source distribution

that was built to provide a simple environment in which to build computational clusters,

grid endpoints and visualisation tiled-display walls.

2.3 Parallella

The Parallella board is an “affordable, energy efficient, high performance, credit card

sized computer”[2] that aims to provide a platform for developing and implementing high

performance parallel processing. The 66-core version (64-Epiphany cores and two ARM

cores) of the Parallella board achieves over 90 gigaFLOPS (109 floating point operations

per second), while the 18-core (16-Epiphany and 2 ARM cores) version can reach 32

gigaFLOPS using only about 5 Watts. The Parallella has a 1-Gbps Ethernet port allowing

a large amount of information to be passed quickly over the network. This increases its

ability to work in a cluster as it can pass information to its peers rapidly, provided that

the switch is capable of handling the 1Gbps bandwidth.

The aim of creating the Parallella board was to make parallel computing more accessible

by creating an affordable, open-source, and open-access platform.

The price of a Parallella board starts at $99 (at the time of writing) for the 16-core board

and uses a customised ARM implementation of Linux (Ubuntu 14.04). The Parallella is

three years old and software that takes advantage of this is still being developed9[25].

8http://www.rocksclusters.org/
9https://www.kickstarter.com/projects/adapteva/parallella-a-supercomputer-for-everyone

https://www.kickstarter.com/projects/adapteva/parallella-a-supercomputer-for-everyone
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Programming for the Epiphany chip (the Parallella boards co-processor) is done in C

and the Parallella team have provided some basic primitives with the SDK (Software

Development Kit). Memory addressing, barriers, and communication between eCores are

a few examples of what is provided by the SDK.

To run programs on the Epiphany chip, a workgroup of cores needs to be set up. This

can be done using the provided SDK to give a starting node and the number of columns

and rows in the matrix of cores [6; 23; 31; 27].

2.3.1 Specifications

As the proposed cluster will make use of the P1601 (Parallella board with a 16-core

Epiphany chip co-processor) instead of the 64-core version, the technical specifications of

this board are given below [25].

Figure 2.3: Architectural layout of the Parallella board (taken from [2])

Figure 2.3 shows that the interfaces and operating system are run with the dual-core ARM
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processors; the programs running on the ARM processors can use the Epiphany libraries

provided with the SDK to set up and run programs on the individual cores [25; 26; 6; 31].

The Parallella makes use of a Zynq-Z7010 dual-core ARM A9 CPU to run the operating

system and programs not designed to run on the Epiphany chip. A rundown of the

Parallella components is given below[25]:

• Zynq-Z7010 Dual-core ARM A9 CPU

• 16-core Epiphany Co-processor

• 1GB DDR3 RAM

• MicroSD Card: Allows storage of local files.

• USB 2.0

• Up to 48 GPIO signal

• Gigabit Ethernet: The high-speed Gigabit Ethernet allows for rapid transfer of data

across a network allowing the cluster to communicate with lower latency.

• HDMI port

• Linux Operating System: The Linux operating system is well supported by multiple

MPI libraries [8; 19; 18; 15; 1].

• 54mm x 87mm form factor: The small form factor of each of the boards makes it

highly portable even if using multiple boards.

Figure 2.4 illustrates the 2D array of cores, which Adapteva calls eCores. Each eCore has

a 1GHz RISC CPU, 32 KB of local memory, a network interface, and a direct memory

access (DMA) engine. This matrix is connected to the rest of the chip via a router. The

router communicates with the rest of the chip via three connections: the blue connector is

the on-chip write network, green is the off-chip write network, and red is the read request

network. The eCore CPU is super-scalar and can execute two floating-point operations

and a 64-bit memory load/store operation in every clock cycle. The local memory can

provide up to 32 bytes per clock cycle of bandwidth [25; 26; 6; 31].

The Epiphany processor on this board is the Epiphany III (E16G301), the feature sum-

mary of which is given below [6]:

• 16 high performance RISC CPU cores:
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Figure 2.4: Epiphany mesh architecture [6]

• C/C++ and OpenCL programmable

• 32-bit IEEE floating point support

• 512KB on-chip distributed shared memory: This can be used to pass messages and

share data across the chip.

• 32 independent DMA channels

• Up to 1GHz operating frequency

• 32 gigaFLOPS peak performance

• 512 GB/s local memory bandwidth: The access speed of each RISC core’s local

RAM.

• 64 GB/s Network-On-Chip bisection bandwidth: The speed at which message pass-

ing takes place on the chip.

• 8 GB/s off-chip bandwidth: The performance of communicating off chip.

• 1.5ns network per-hop latency

• <2 Watt maximum chip power consumption: The power consumption of the Epiphany

processor; combined with the rest of the board, the total is 5 W.
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2.3.2 Existing Parallella Configurations

Below we discuss a few of the HPC configurations that have been implemented using

Parallella boards.

Parallac The Parallac is a cluster consisting of eight Parallella boards for the main

computation and two intel NUCs (next unit of computing) that are each equipped

with an Intel i3 processor, 16 GB of RAM and 120 GB of SSD storage. The design

of the configuration was inspired by the Cray 1 supercomputer. The Parallellas

are powered using their mounting holes connected to a power supply unit (PSU)

via a copper plate. The configuration is compact and cables are well managed10.

Unfortunately, the Parallac website does not show any results on how well this

system performs on any benchmarks.

supercomputer.io Supercomputer.io is a project to create a community-hosted super-

computer created by connecting the Parallellas of anyone who signs up and sets up

their Parallella with the required software and hardware. These Parallellas are con-

nected to each other and the supercomputer.io network over the Internet. Scientists

can then submit requests to use the cluster for their research[3]. The supercom-

puter.io project intends supporting other boards in time but at the time of writing

it only provides support for Parallella boards. To connect a Parallella board to the

supercomputer.io network, the Parallella must have at least a 4GB SD card and a

connection to the Internet. The supercomputer.io operating system is copied onto

the SD card, and using an active Internet connection, the Parallella connects to the

supercomputer.io network and waits for work to be allocated to it [3].

2.4 Summary

The three main topics researched in this chapter were HPC, software options for clusters

and an overview of the Parallella board. Aspects of HPC that we discussed included

how the performance of an HPC system is measured and the different types of high

performance configurations. The cluster software looked at included message passing

implementations, shared memory and a cluster suite Rocks. Finally, the Parallella board

and information on existing Parallella cluster implementations were investigated. Of the

cluster configurations found, no benchmark results were obtained.

10http://www.parallac.org/

http://www.parallac.org/


CHAPTER

3

CONFIGURING THE CLUSTER

This chapter discusses the physical construction of the cluster (which we refer to as the

Parallella stack), including powering, networking, and cooling. On the software side, we

look at configuring Ubuntu 14.04, NFS, SSH, Open-MPI and the network layout as needed

for the Parallella stack to work as a cluster. At finally, we mention some of the problems

encountered.

3.1 Physical Layout of Cluster

In this section we cover how the physical components of the Parallella stack were put

together to create the completed project.

3.1.1 High Level Overview

Here we provide a summary of the entities required to manage and enable the Parallella

stack. The following figure shows an overview of how each entity is connected to the

cluster:

16
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Figure 3.1: Basic overview of the cluster

The four parallella boards are connected to a gigabit switch with each having the hostname

“parallella” followed by a unique number, for example, “parallella1”. Parallella1 was

chosen to launch programs to the cluster and can be referred to as the head node. The

parallella boards are stacked on top of each other using spacers to separate them and

two fans on either side. The fans are arranged to force air through the stack, with one

pushing and the other pulling air through to cool them. This setup increases airflow

allowing for heat to be carried away faster. The stack of parallella boards are placed on a

non conductive surface and power is transfered through the spacers connecting each board.

Access to the head node is done via ssh from a non Parallella host which will be referred

to as the Controller, which is also connected to the gigabit switch. Giving commands

to the cluster is typically done by connecting to the head node of the parallella stack

via the Controller. Connected to the switch other than the cluster and external machine

are a NFS server and a DHCP server. These two entities do not need to be on separate

machines but in this case they are, They may also be setup to be on the Controller but

when connecting a new computer to control and interact with the cluster it will have to

be setup to fulfil the NFS and DHCP roles making the cluster less portable from machine

to machine.
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3.1.2 Components

The following are the components needed to build the cluster:

• 20 Nickel plated male-female M3 hex spacers. 15mm body and 6mm stud

• 2x M3 nuts and 4x M3 washers

• 2x M3 crimp/solder tags

• 4 small 6mm long wires

• A power-supply that can output 5V 8A (2A per board)

• 3x 4-Pin Molex to 3-Pin ATX adaptors

• 2x 120mm case fans

• 4x P1601 Parallella boards [2]

• 4x SD cards

• A non-conductive surface

• 1GB Ethernet switch

• Cat5e Ethernet cables

• A non parallella for NFS: For this project a Raspberry pi was used.

• A DHCP server

3.2 Cluster Design and Interface

In this section we provide more details on the design of the cluster and its external

interface.
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3.2.1 Powering the Cluster

It was decided to power the Parallella boards using the padded mounting holes provided

in each corner of the board. To allow power to be received from the mounting holes a

conductive bridge was needed in the corner of the board closest to the barrel connector [2]

as shown in Figure 3.2. Using solder and a short length of wire a jumper was placed

connecting the two provided holes together; this location may be seen in more detail

in [2].

Figure 3.2: Soldered bridge allowing power from corner pads

Once the bridge was in place, power could be provided to multiple boards through the

conductive material used to stack the boards. In this case, the provided Nickel plated

male-female M3 hex spacers were used to connect all the boards to each other and carry

a charge to each board as seen in Figure 3.3. Since the nickel stands are conductive care

must be taken when powering the boards that the occupied surface is non-conductive;This

is achieved by using the black material seen at the bottom of Figure 3.3.

To operate, each board requires 5 V at 2 A. Since four Parallella boards are being used,

a power supply was needed that could output at least 8 A. This cluster uses a Corsair

450W which can provide a DC output of +5 V with a maximum load of 16 A. This meets

the required power output requirements.

To connect the rails to the power supply, one of the 4-Pin Molex to 3-Pin ATX adaptors

was modified by removing the 3-Pin ATX connector and one ground cable. Then, the

cable providing power needed to be swapped from the 12V side of the Molex to the 5V
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Figure 3.3: Stacked cluster using Nickel plated spacers

side. The loose ends of the cable were then affixed with solder tags so that the cable could

easily and neatly be attached to the spacers connecting the individual Parallella boards.

The yellow wire with a red solder tag is the 5 V connector and the black wire with the

dark blue solder tag is ground. These are affixed in the corners with the 5 V wire being

attached to the corner closest to the soldered bridge in Figure 3.2; the second ground

connection may be connected to any of the other corners on the Parallella board.

Figure 3.4: Modified Molex connector

This configuration meant that the standard power-supply did not need to be modified

and the cluster could easily be detached . This opens up the power-supply to be used for
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other things while not powering the Parallella cluster. Having a standardised connector

increases the cluster’s ease of use by making it more obvious to future users how to provide

the cluster with power.

Due to passive cooling not being enough to keep the Parallella board from over heating

when under heavy use two fans have been set up on either side. One fan pushes air onto

the boards while the other pulls air from the boards; this may be seen in Figure 3.1 at

the start of the chapter. The fans are connected to the power supply by 4-Pin Molex

to 3-Pin ATX adaptors thereby directly connecting the fans to the power supply and

allowing the clusters cooling to also be easily detached. A heat sink was attached to the

Zynq processors of each Parallella board with the fins directed parallel to the direction

of the air pushed by the fans. This lets the air pass over the largest area and offers more

heat dissipation compaired to if it was placed perpendicular to the air flow.

3.2.2 Communication Between Nodes

To allow communication between the individual parallella boards, a network needed to be

set up. we used a 1-gigabit switch with sufficient ports to handle at least six connections

and multiple category-5 enhanced or better Ethernet cables. Connecting each board to

the switch using an Ethernet cable allows network traffic to ensue.

To allow communication with an individual board, an IP address was needed. To provide

these addresses, a DHCP server was connected via an Ethernet cable to the switch. The

DHCP server could then provide each of the boards with an individual IP address and

a connection to the Internet via nat. To allow communication to the cluster from the

outside world, a PC was connected to the switch and an IP address assigned to it from

the DHCP server.

3.3 Software

In this section, we give a break down of the software and required configuration needed

to allow programs to be executed using MPI on the Parallella cluster.
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3.3.1 Linux

The Parallella boards were supplied with a raw disk image of Ubuntu 14.04, downloaded

from the Parallella website1. There are three different versions of the Parallella board for

which Ubuntu images are provided: the z7010 image applies to the P1600 and P1501,

while the z7020 image is for the P1602 [25]. The z7010 is specific to Parallella boards

with the Xilinx Zynq Dual-core ARM A9 XC7Z010 host processor, which matches those

used in the cluster. The other image is for the Xilinx Zynq Dual-core ARM A9 XC7Z020,

which is used on the embedded version of the board.

There are also two different images per host processor: the first is a headless one, which is

what we have used as it is the most stripped down of the images, while the other includes

a desktop environment and HDMI drivers. The latter version is useful for displaying

generated graphics and writing code in a GUI environment. The latest version of Ubuntu

14.04 headless for the z7010 was downloaded2 and extracted.

Each Parallella board has a microSD card that acts as its main hard drive and into which

the board is booted. All software that will ultimately be executed on a Parallella board

must be copied to the microSD card. The capacity of the cards used in the cluster is 16

GB and the speed class is UHS mark 1 which makes the Minimum Serial Data Writing

Speed 10 MB/s3. Using a Windows 7 machine, Win32 Disk Imager4 and an SD to USB

adaptor, the downloaded image was copied to each of the microSD cards.

After installing the microSD cards, each Parallella was powered up; the default username

was“parallella” and password“parallella” and each had the same hostname “parallella”.

Having the same hostname is not ideal as it makes it difficult to tell one machine from the

other. Running a network scan discovered the assigned IP addresses of the four Parallella

boards given by the DHCP server. Using SSH each of the hostnames was changed to

“parallella” followed by a number from 1 to 4 so that each could be uniquely identified.

Next the hostnames of each Parallella board were added to the hosts folder in the root

directory of each Parallella, which allowed the name of the device to be used, instead of

remembering its IP address when wishing to interact with it. The lines of code added to

the hosts file are given in Listing 3.1.

1ftp://ftp.parallella.org/ubuntu/dists/trusty/image/
2At the time of writing, the appropriate file was Ubuntu-14.04-headless-z7010-20150130.1.img.gz
3https://www.sdcard.org/developers/overview/speed_class/
4Downloaded from http://sourceforge.net/projects/win32diskimager/

ftp://ftp.parallella.org/ubuntu/dists/trusty/image/
https://www.sdcard.org/developers/overview/speed_class/
http://sourceforge.net/projects/win32diskimager/
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Listing 3.1: Contents of /etc/hosts

. . .

1 0 . 4 2 . 0 . 2 1 p a r a l l e l l a 1

1 0 . 4 2 . 0 . 2 2 p a r a l l e l l a 2

1 0 . 4 2 . 0 . 2 3 p a r a l l e l l a 3

1 0 . 4 2 . 0 . 2 4 p a r a l l e l l a 4

To use the Epiphany co-processor, the Epiphany SDK was installed on the system and

its location added to the PATH variable. In the provided Ubuntu image, the SDK was

compiled and the path added in the .bashrc file. The associated environment variables are

“EDIR” and “EPIPHANY HOME”; these are important when trying to run and compile

Epiphany programs.

3.3.2 SSH

SSH or Secure Shell is a network protocol that allows one computer to securely access

another over a network. In the case of the Parallella stack the Open-SSH implementation

will be used to facilitate the passing of messages between nodes by OpenMPI. Secure shell

by standard uses port 22 and TCP to create connections between nodes so it is vital that

this port is available and open. For the master node to command the slave nodes using

Open-SSH the ssh client needs to be installed using “apt-get install openssh-client” on

the Parallella board Ubuntu distribution. On each of the slave nodes “openssh-server”

needs to be installed for the openssh client to connect to. For convenience, passwordless

SSH was set up between the nodes so that OpenMPI is able to run programs on the nodes

without needing a password to be provided for each run. To do this RSA public/private

key pairs are used to authenticate the master with the slave nodes. To set up the keys

ssh-keygen is used to create the key pairs and then the public key needs to be added to

the slave nodes’ authorised users. Using “ssh-copy-id [host]” where the host is replaced

with the host to be accessed without a password.

The ssh-copy-id adds the public key of the node running the command to the authorised

list of public keys on the host node, the user is prompted to input the host nodes password

and the list is updated. Once the public key is added the trusted node may easily access

the remote host using the “ssh” followed by the IP or hostname of a node.
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3.3.3 Open-MPI

OpenMPI was preinstalled and the environment correctly set up on the Ubuntu image

provided. To set up OpenMPI, a user account was created on each parallella with the

same directories and file locations for consistency when running anything through mpiexe

or mpirun. To synchronise the files so that each instance of a program on each node had

access to its local directory, NFS was used, the configuration of which is described in

Section 3.3.4.

If SSH has been configured correctly, the password of each node being used does not need

to be entered when running an MPI program.

To inform MPI what nodes to run on using their address and how many cores must be

used on each node, a machine/host file is used. The format of this file is given in Listing

3.2; here, the node address is followed by the number of cores to run on, which are referred

to as slots. The hostfile is chosen when invoking mpiexe or mpirun using any of these flags

“-h, -hostfile, -machinefile” followed by the hostfile to be used. In Listing 3.2, the number

of slots is specified one per node even though the Zynq processor has two ARM cores; if

the program used both cores and both threads tried to interact with the Epiphany core it

would be undesirable. An explanation on how to avoid this is given in Section 4.1. The

hostfile in Listing 3.2 is for interacting with only one core per board which accesses the

16 cores of the co-processor.

To compile programs the command “mpicc” is used together with the flags needed by gcc

to link the epiphany libraries, is used.

Listing 3.2: Contents of ˜/NFS share/hello world/machinefile

p a r a l l e l l a 1 s l o t s =1

p a r a l l e l l a 2 s l o t s =1

p a r a l l e l l a 3 s l o t s =1

p a r a l l e l l a 4 s l o t s =1

When using MPI over SSH, the hosts environment is not carried over to each node, and

when OpenMPI connects to another node it does not run .bashrc where the Epiphany

variables and environment are set up. Instead, these variables have to be exported using

the -x flag when invoking mpirun or mpiexe; otherwise, the programs executing on the

slave nodes will not be able to find the shared libraries for the Epiphany co-processor and
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will not know what sort of Epiphany chip is being used. (This may be a problem when

executing on Parallella boards with different sized Epiphany chips.)

The environment variables that have to be passed across are LD LIBRARY PATH which

contains the location of the Epiphany’s shared library’s (eg e-hal.so) and EPIPHANY HDF

which contains whether it is a 64-core Epiphany chip or a 16-core Epiphany chip. (Scala-

bility is one of the strengths of the Epiphany architecture so more chip sizes may become

available. At time of writing there are only 64 core and 16 core chips.)

3.3.4 Network File Share

For OpenMPI to work correctly, the file structure and locations of used files must be the

same on each node. For this to happen, one of the nodes or a different machine was chosen

to host all the program files and have all the nodes connect to that shared drive so that

each node has the exact same version of the files as every other node. For our cluster, a

different machine was used as problems occurred when running nfs-kernel-server on the

master node, which was originally set as one of the Parallella boards; for details, refer

to Section 3.4.2. To remedy this, a Raspberry Pi was set up with an installation of nfs-

kernel-server and its dependences through a repository. The upside of using a Raspberry

Pi is it means that the cluster continues to use very little power, the downside is that the

Ethernet adaptor used by the Raspberry Pi is only 100Mb/s and will not take advantage

of the 1Gb/s Ethernet that is used by everything else that is part of the cluster. So the

shared storage is accessed slower and if the cluster tries to access and copy large amounts

of data there will be a large performance drop. To counter this when using large files and

data they should be copied to each Parallella board’s local hard drive for faster access.

NFS manages what is shared using an exports file that lists the permissions and locations

of what is shared and allows clients to sync with the folder.

A folder called cloud was created on the NFS server to be the shared folder for the cluster.

This was then added to the nfs exports file, as illustrated in Listing 3.3. The asterisk

allows any host to connect to this share; however, this can be restricted if desired to

increase security and limit unwanted access. The words following the asterisk are the

options for that shared folder

• rw allows the nfs client to read and write files to the shared directory

• sync forces any changes that are made to files to be immediately flushed to disk
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• all squash All users including root when creating a file or folder using NFS will be

creating it as a user named nobody

The rw option allows any of the Parallella boards or machine connected to the NFS

server to read and write to the directory, this is vital as it allows the compiled files to

be created and shared by any machine connected and then read and executed by other

connected machines. The sync option forces a change to be written to the servers disk

before informing the client that it is safe to remove its cached data. If async is chosen

the server replies before it has properly written the data and this may lead to corruption

of the data if something happens to the server before it has properly copied the data.

More on sync vs async behaviour may be found at5. The all squash option means every

client connected to the server when creating and writing files they are treated as a user

“nobody”. The user nobody has been setup to create files with read write and execute

allowed so that clients do not have to chmod as root when wanting to run a program. It

also prevents files being created on the server as root which may pose a security risk.

Listing 3.3: Contents of /etc/exports

/ c loud ∗( rw , sync , no subtree check , a l l s q u a s h )

After the export file had been set up, the nfs-kernel-server was restarted to refresh its

settings. Once the server configuration had been completed, all the nodes in the cluster

were connected to the server. To do this, on each node a new folder was created in which to

mount the share. This folder was located in the same place on all the nodes. Using mount

only mounts the share until the cluster is next restarted; to prevent having to remount

the shared folder every time the cluster was restarted, the following line was added to the

file /etc/fstab: “10.42.0.21:/cloud /home/parallella/cloud nfs”. fstab is looked at by the

operating system on boot and each line is the configuration for automatically mounting

a folder. The line is split into: location of folder to mount followed by where to mount

it and then the type of file system the folder uses, There are more options but for the

purposes of this project just these are needed.

On completion of the configuration, when a change is made on one node, it is saved and

reflected on every other node.

5http://nfs.sourceforge.net/nfs-howto/ar01s05.html

http://nfs.sourceforge.net/nfs-howto/ar01s05.html
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3.4 Problems encountered with Cluster Configura-

tion

This section discusses some of the problems encountered when setting up the cluster and

how these were mitigated.

3.4.1 DHCP issue

After several alternative attempts, the way an Internet connection was provided to each

of the boards was to connect a DHCP server to the switch which provided internet via

nat. With each of the Parallella nodes having an IP address, once the server has access to

the Internet, it can provide a connection to each of the nodes. Using a DHCP server to

provide IP addresses to each of the boards simplifies the set up required to communicate

with the boards and other devices connected to the switch.

3.4.2 File Sharing NFS

Originally one of the Parallella boards was designated as the main node; however, due

to NFS-kernel-server package provided by the Ubuntu repository not working with the

Parallella kernel, it was decided to move the NFS server to a different machine.

This problem arose after installing the NFS-kernel-server package available from the

Ubuntu repository on the designated Parallella main node. When attempting to set

up the exports, the user was notified of an incompatibility with the kernel. It may be

possible to compile the NFS-kernel from source on the Parallella, but this may still not

work as NFS requires the kernel to be set up to support it6.

3.5 Summary

The first section of this chapter provided an overview on how the Parallella stack was going

to be built and the entities needed for operation. In the following sections the process

6Linux NFS-HOWTO http://nfs.sourceforge.net/nfs-howto/ar01s02.html#software_

prereqs

http://nfs.sourceforge.net/nfs-howto/ar01s02.html#software_prereqs
http://nfs.sourceforge.net/nfs-howto/ar01s02.html#software_prereqs
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of building the physical Parallella stack and its requirements are described leading into

the required software and software configurations so that programs may be run on the

cluster. To end the chapter the issues discovered whilst building the cluster and how they

were overcome.



CHAPTER

4

BENCHMARKING THE CLUSTER

In this chapter we discuss how programs are created for execution on the cluster and

compare the execution speeds of these programs running on different machines.

4.1 Creating Programs for Parallella Cluster

As the Parallella stack is a heterogeneous cluster, to be able to utilise fully the computa-

tional power of each board, MPI is used in conjunction with the Epiphany libraries.

Creating a program for both MPI and the Epiphany co-processor requires splitting of

the work on two occasions: once at the MPI level and again for distribution to the co-

processor. Figure 4.1 illustrates the process of running a program that uses MPI to spilt

work between the four Parallella boards in the cluster, which then load the required srec

files onto their respective co-processors. Figure 4.1 displays the way that MPI is run

over SSH using parallella1 as the master node; this may slow down parallella1 owing to

the overhead of setting up the MPI program on each Parallella board. If the cluster has

a large number of nodes, the delay to parallella1 may be large, causing an unbalanced

workload and extended execution time.

29
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Figure 4.1: Starting a program using MPI for execution on Epiphany cores

Figure 4.2: Execution on the cluster without using one of the Parallella boards to set up
the MPI environment

A configuration favouring performance can be seen in Figure 4.2 where a separate com-

puter is used as the master node. For ease of use, the master node should be equipped

with an ARM compiler and e-gcc so that programs can be created and run without the

need to SSH into the cluster manually. The master node should also be able to run an

NFS server and each node should have the file system mounted so that they can retrieve
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the compiled srec files. In Figure 4.2, the master node sets up the MPI environment and

organises each of the Parallella boards in the cluster. This removes the strain of setting up

the MPI environment from one of the Parallella boards so that its load is similar to that

of every other node in the cluster. Running a program on a Parallella board while using

the Epiphany co-processor requires multiple files. Each program/kernel that needs to be

run on an Epiphany core is compiled using the e-gcc compiler provided by Adapteva1 and

then converted to an srec file using e-objcopy. An srec file is a representation of a binary

file using ASCII hex text. The srec file is loaded onto a core by a separate program that

is compiled by gcc using the e-hal library in the Epiphany SDK to provide the necessary

functions. These libraries must be provided at compile time using the -l argument. A

program on a core can use “e-lib” to get its core id or coordinates in the 16× 16 matrix

of cores. The core’s identity can be used to split work when a single program is loaded

onto multiple cores instead of creating one program for each core. When the host program

loads an srec onto the Epiphany co-processor, the host program needs to know onto which

cores the program must be loaded and have access to the srec file. The host program can

do this one core at a time using e load(), or by choosing a grid of cores on which to load

the srec using e load group.

Listing 4.1: Typical Epiphany host program

#include <e−hal . h>

. . .

e i n i t (NULL) ;

e r e s e t s y s t e m ( ) ;

e g e t p l a t f o r m i n f o (&plat form ) ;

e open(&dev , 0 , 0 , p lat form . rows , p lat form . c o l s ) ;

. . .

e l oad group ( ” e h e l l o w o r l d . s r e c ” , &dev , 0 , 0 ,

p lat form . rows , p lat form . co l s , E TRUE) ;

. . .

e c l o s e (&dev ) ;

e f i n a l i z e ( ) ;

. . .

}

In Listing 4.1, we first initialise the core and reset it to remove any garbage that may have

1ftp://ftp.parallella.org/esdk

ftp://ftp.parallella.org/esdk
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remained from a previous program. The next step is for the program to work out the size

of the core. This information is provided by the path variable EPIPHANY HDF and is

stored in the platform. Once the type of Epiphany processor is known, the dimensions

of the Epiphany core can be used to split programs equally over the processor. The

example given in Listing 4.1 loads one program as its srec file onto all the cores. It is

possible to load data into the local memory of an eCore or into the shared memory of

the Epiphany processor before and after loading the srec onto any individual core. This

allows the required data to be set up depending on conditions external to the Epiphany.

Once an srec is loaded onto an eCore, the program starts executing; the host program

continues executing immediately after initialising the Epiphany co-processor. The result

of the computation can be retrieved from the eCore’s memory but care must be taken

to ensure that the core has completed its computation. When the Epiphany processor

terminates, the host program closes the opened workgroup or core and finalises the use

of the processor. Closing the Epiphany processor is similar to how the MPI libraries exit

cleanly.

Listing 4.2 shows some of the basic commands to obtain the current core’s ID and its

position in the matrix of cores, and then to idle the core. To get to the point where

this code is loaded as an srec onto the co-processor by the host program, it needs to be

compiled using e-gcc. Then, using e-objcopy, the ebinary is converted to an srec file.

Listing 4.2: Typical Epiphany core program

#include ” e l i b . h”

. . .

e c o r e i d t c o r e i d ;

e memseg t emem;

e shm attach(&emem, ”Name Shared Memory” )

c o r e i d = e g e t c o r e i d ( ) ;

e c o o r d s f r o m c o r e i d ( core id , &my row , &my col ) ;

. . .

a sm v o l a t i l e ( ” i d l e ” ) ;

}

The first line in Listing 4.2 includes the e lib library that contains definitions and functions

for dealing with the eCore; for a complete list of functions, the reader is referred to [7].

All the Epiphany functions are prepended with e to differentiate them from normal C
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functions. The emem variable in Listing 4.2 is used to access shared memory. It is attached

to the memory allocated by the host using e shm alloc, and which can be accessed with

e read and e write. At the end of the example, the core is forced into its idle state; it is

also possible to just return with EXIT SUCCESS or EXIT FAILURE.

The MPI setup portion of the code is very similar to the Epiphany code, given in Listing

4.3. When compiling a host program that uses MPI, the MPI compiler mpicc must be

used. The same compiler flags and libraries are used when compiling.

Listing 4.3: Basic MPI setup

#include <mpi . h>

. . .

MPI Init(&argc , &argv ) ;

MPI Comm size (MPI COMM WORLD, &numprocs ) ;

MPI Comm rank(MPI COMM WORLD, &rank ) ;

MPI Get processor name ( processor name , &name ) ;

. . .

MPI Final ize ( ) ;

return 0 ;

}

The first line in Listing 4.3 serves to include the MPI library, so that the program can

use Open-MPI’s definitions and functions. Before MPI commands can be used to pass

messages carrying data, MPI Init must be called by the main thread. It is recommended

that this is done as little as possible before the call and especially after finalisation to

prevent anything changing the external program state2. Once MPI has been initialised,

the number of threads to be activated is obtained as well as the current process’ rank,

which is that process’ unique identifier. It is also possible to retrieve the hostname of

the system, making it easier to identify the processor node. In the case of the Parallella

stack,“parallella” 1, 2, 3 or 4 is placed into the variable name. After initial setup, the

bulk of the processing takes place and when this terminates, the main thread executes the

Finalize command to ensure that all the other threads have returned correctly without

error.

By using the code provided in Listings 4.1, 4.2, and 4.3, all the cores in the Parallella

stack can be accessed and used.

2http://www.mpich.org/static/docs/v3.1/www3/MPI_Init.html

http://www.mpich.org/static/docs/v3.1/www3/MPI_Init.html
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4.2 Benchmarks

In this section, we discuss the two benchmarks executed. The first benchmark determines

the Parallella stack’s ability to do a large number of floating point multiplications while

the second tests the cluster’s communication speed.

4.2.1 Floating Point Multiplication

This benchmark, which is embarrassingly parallel, tries to emulate ideal conditions for

the Parallella stack by creating and splitting up work for each core to do. This work

requires no synchronisation with any other processes. This benchmark merely multiplies

two floating point numbers for the desired number of iterations. However, the two floats

are modified on every iteration to prevent the processor from possibly using a cached

answer. This benchmark has a sequential version, which was executed on the i5 CPU

and on a single ARM processor, a Parallella version for running on a single Parallella,

and a modified version of the Parallella implementation with added MPI compatibility

for execution on the cluster.

For splitting work among the eCores, the number of iterations allocated to each core

is calculated on the ARM processor by dividing them amoungst the eCores and using

e write copied to all the eCores. Another integer-size piece of memory is also initialised

to zero using e write, for use as a flag to notify when the eCore has finished processing.

The srec of the program for multiplying floats is then loaded onto the Epiphany, which

first retrieves how many iterations to perform and then starts looping through the work.

Once the eCore has finished its required work, it sets the section of memory set aside as

a flag to one and goes into an idle state. The host program after starting all the eCores,

begins a while loop where it polls the flag section of memory until it retrieves sixteen ones,

which signifies that all the eCores have finished their calculations and it may continue to

finalize and close the Epiphany processor.

The MPI cluster version does the same as the single Parallella version, but it splits the

number of iterations into four chunks, each of which is further divided by sixteen. The

program then uses MPI Barrier to make sure all the nodes are at the same point. It then

starts a timer and goes through the single Parallella version and afterwards is stopped by

another barrier. The time is measured and reported by processor 0 using the rank variable

to ensure only one process is printing to screen. The processors all run MPI Finalize and
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exit. The version that uses the Epiphany and the ARM cores is the same but using the

processor rank variable, only even numbered processors load programs onto the Epiphany

cores and then run through the same number of iterations themselves before checking to

see if the eCores have completed. The odd numbered processors immediately start with

their assigned number of iterations and synchronise with the even numbered processors

at the last barrier before calculating the total time taken.

Figure 4.3: Time taken per machine for 100,000,000 iterations

Figure 4.3 shows that the time difference between one Parallella board and four Parallella

boards is closer to a 2.5× speedup instead of the expected 4× increase. Before adding the

MPI Barriers and having each process started by MPI being completely separate after

launch, the speedup was between 3.9× and 4.1×. This situation we felt was unrealistic

as even the most parallel application would need to amalgamate its results at the end

of the computation. This adds a constant time to the total computation, which, if the

computation time were sufficiently large, would not effect the time in a significant way as

it is not reliant apon the amount of iterations.

The difference in the timings of the Intel i5 3570 and the Parallella are very close and

while the i5 is faster, it is worth noting that at 100% load, the Parallella stack consumes

approximately 20 Watts of power, which is three times less than that used by the i5 when
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idle3.

Figure 4.4: Speed increase relative to a single ARM core

The performance increase using one Epiphany chip for low powered computation is 11×
faster than the ARM core provided with the Parallella board. The downside is that using

the Epiphany core requires more code and specialised algorithms to achieve the speed

increase. On the other end of the spectrum using all the ARM cores and the Epiphany

co-processors is nearly enough to achieve equal performance gains with the sequential i5.

4.3 Ethernet Bandwidth Benchmark

This benchmark was created by Blaise Barney4 to measure point-to-point communications

between MPI processors.

The benchmark pairs processes together and sends incrementally larger and larger mes-

sages between them and notes the speeds. As seen in Figure 4.5, the bandwidth appears

to get faster the larger the messages get, excluding some outliers. The larger message

3http://www.tomshardware.com/reviews/core-i5-3570-low-power,3204-13.html
4available from https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_bandwidth.c

http://www.tomshardware.com/reviews/core-i5-3570-low-power,3204-13.html
https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_bandwidth.c
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Figure 4.5: Average point to point bandwidth using MPI

size increases the time in which a message is in transmission while the time to set up

the connection between nodes stays the same as the number of messages sent is constant.

The larger message size causes the MPI overhead per byte of data to be less.

The average bandwidth in Figure 4.6 is lower than the values recorded in Figure 4.5, this

is due to the two processes per Parallella board competing to use the Ethernet interface.

These benchmarks show that it may be better for one process to handle the boards

communications and retrieve data for both local processes.

4.4 Limitations

This section will cover the limitations and weaknesses of the Parallella board that were

discovered over the course of this research.
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Figure 4.6: Average point to point bandwidth using MPI with multiple processes per
board

4.4.1 Complex Arithmetic

When running the benchmark in Section 4.2.1 instead of multiplying we attempted to

divide the two floating numbers. The performance difference in this case was huge, with

the ARM 667MHz core 16.74× faster than the Parallella stack just using the Epiphany

co-processor and 66.17× faster than a single 16-core Epiphany chip. This is due to the

eCores having no hardware support for higher-complexity arithmetic. This translates to

doing long division and requiring more CPU cycles per instruction. The slow division

has far reaching consequences as many useful functions rely upon it such as modula and

rand(). To try mitigate the performance drop if a large amount of division or complex

arithmetic needs to be done it is better to pass the work to the ARM processor which can

do the calculations and pass the data back to the co-processor.

4.4.2 Hardware Optimisations

All optimisations for Epiphany programs must be done by the compiler instead of clever

hardware. The simple RISC cores provided on the Epiphany chip do not attempt to
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predict or change the ordering of instructions being executed5.

4.5 Summary

Within this chapter we provided the basic commands and information needed to create

and run an MPI Epiphany program on the Parallella stack. The results, and method of

two benchmarks and a breakdown of what may be concluded from the results. The last

section of the chapter goes over the discovered limitations and if possible how the author

thinks they may be mitigated.

5http://www.bdti.com/InsideDSP/2012/09/05/Adapteva

http://www.bdti.com/InsideDSP/2012/09/05/Adapteva
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5

CONCLUSION

This chapter summarises the research, gives our conclusions on the Parallella cluster, and

suggests possible extensions to the research.

5.1 Summary

Our objectives for this project were to build a cluster using four Parallella boards and to

benchmark the cluster against similar low-cost systems.

In this thesis, we discussed how a cluster of four Parallella boards was constructed and

powered using a single power supply. The Parallella stack is actively cooled by two fans

and connected to a 1Gb/s switch to facilitate communication between boards.

Software for programming and running distributed programs on the cluster was set up and

configured and an NFS server for storing files and a DHCP server to provide Internet and

IP addresses were set up and added to the network. This means that the only requirement

for interaction with the Parallella stack is a working SSH-client, making the system easily

accessible with minimum effort and easy to set up on multiple machines. This satisfies

the first two main objectives.

40
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For benchmarking, some simple programs were created and executed sequentially and

in parallel on the Parallella stack. The Parallella stack performed slightly worse when

compared with an Intel i5 3.40GHz processor, but used at least three times less power 1.

In terms of cost, both the four Parallella boards and the Intel i5-3570 cost approximately

$400 2, but to make use of both devices more components are needed adding to the total

cost. Depending what hardware is bought to use with these devices the costs could be

similar.

We found that the lack of hardware support for complex arithmetic such as square roots

and division can be costly to performance if the instruction is frequent enough and steps

are not taken to delegate complex arithmetic to the local ARM core, which does have the

hardware support to process quickly. It is was also discovered and noted that the RISC

cores on the Epiphany do not do any runtime optimisations and the only automated

optimisations are provided by the compiler.

Unfortunately, owing to issues in rewriting the standard parallel benchmark programs

to allow the ARM processor to partition the work among the Epiphany cores, we were

unable to compare the performance of the cluster against results available for other similar

low-cost, low-power clusters and systems.

5.2 Future Work

As this research only set out to create a basic cluster, there is plenty of scope for further

development and optimisation.

More benchmarks and programs should be executed to further test the Parallella stack.

Additionally, research into using the Brown Deer COPRTHR (co-processing threads)

library3 to help create Epiphany MPI programs is needed. The Parallella’s Zynq processor

has a field-programmable gate array that may be used to re-program the boards to better

suit different purposes.

To facilitate use of the cluster, a web front end could be created to receive and run

programs or to monitor the cluster’s current work load. This could be extended to process

1http://www.tomshardware.com/reviews/core-i5-3570-low-power,3204-13.html
2http://www.amazon.com/Intel-i5-3570-Quad-Core-Processor-Cache/dp/B0083U94D8/ref=

sr_1_1?s=pc&ie=UTF8&qid=1446331124&sr=1-1&keywords=Intel+Core+i5-3570
3http://www.browndeertechnology.com/coprthr.htm

http://www.tomshardware.com/reviews/core-i5-3570-low-power,3204-13.html
http://www.amazon.com/Intel-i5-3570-Quad-Core-Processor-Cache/dp/B0083U94D8/ref=sr_1_1?s=pc&ie=UTF8&qid=1446331124&sr=1-1&keywords=Intel+Core+i5-3570
http://www.amazon.com/Intel-i5-3570-Quad-Core-Processor-Cache/dp/B0083U94D8/ref=sr_1_1?s=pc&ie=UTF8&qid=1446331124&sr=1-1&keywords=Intel+Core+i5-3570
http://www.browndeertechnology.com/coprthr.htm
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requests and schedule work so that the cluster can be used simultaneously by multiple

people.

Other extensions could be creating a library for languages other than C, C++ and OpenCL

to be able to use the Parallella stack.
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